
PROGRAMMING 
LANGUAGES 



PROGRAMMING LANGUAGES 

2 

PROGRAMMING 
LANGUAGE 

a set of instructions 
written in a high-level 

language, which 
consists of short words 
generally representing 
instructions in English 

the translation of 
instuctions expressed in 
human language into the 

language used and 
understood by computers, 

which is binary code 

the language used as a 
means of communication 

between the user (the 
programmer) and the 

digital computer 

every instruction consists 
of two parts: 

OPERATION CODE, specified 
the action to be carried 

out 
OPERAND, memory 

address relevant to that 
instruction 



PROGRAMMING LANGUAGES 

3 

The programmer plays a fundamental role because they are the instruments through which the 

requests of the users are understood and carried out by the computers. They need to know 

perfectly both the vocabulary, the set of instructions, the keywords and the vocabulary of the 

programming language chosen. 

Their work consists of two steps: 

 

STEP 1: the programmer writes the programme 

in the chosen programming language. The result 

is one or more text files containing the 

instructions. In this form, the programme is 

called source code. 

 

STEP 2: the source code is subjected to a special 

programme called compiler which checks the 

correctness in terms of lexicon and syntax. If 

everything is correct, the compiler translates the 

source code into the language of the computer 

producing the executable code. 

Each compiler works with its proper CPU. 



PROGRAMMING LANGUAGES 

4 

At the beginning of computer programming, in 

the 1940s, computers consisted of special-

purpose computing hardware: each computer 

was designed to perform one specific arithmetic 

task or set of tasks. 

 

First programmers had to manipulate parts of 

the computer directly, or they had to physically 

put switches in on or off positions. 

 

The hardest part, though, was represented by 

the language used: programmers too used the 

binary code to write instructions. They used the 

machine language and not the human one. 

 

The task written could only be performed by 

that computer only. 

FIRST GENERATION: MACHINE CODE 



PROGRAMMING LANGUAGES 

5 

In the 1950s, programming made a step 

forward with assembly language: despite 

being still difficult to use, it is closer to 

human language than to machine 

language. 

 

It consists of using convenient alphabetic 

abbreviations of English words called 

mnemonics to represent operation codes 

and abstract symbols to represent 

operands. 

 

The computer cannot directly understand 

this language, so it needs translating in 

binary code before being executed. 

 

Again, the task written could only be 

performed by that computer only. 

SECOND GENERATION: ASSEMBLY LANGUAGE 



PROGRAMMING LANGUAGES 

6 

Later developments of programming languages have 

been thought with the programmer in mind rather 

than the computer. These are high level languages 

and they aren’t machine dependent, meaning that 

once a programme has been written it can be used on 

different computers. These programming languages 

are people-oriented. 

 

The instructions in these languages are called 

statements, which resemble English phrases 

combined with the mathematical terms needed to 

express the task or problem programmed. 

 

There are then procedures-oriented languages: in 

this case, programmers can write instructions in 

batch, grouping more instructions into one. A 

procedural language is one that expresses a computer 

problem as a series of discrete tasks and the 

instructions needed to accomplish those tasks. These 

languages are classified as “business, scientic or 

multipurpose”. 

THIRD GENERATION: PEOPLE-ORIENTED PROGRAMMES AND 
PROCEDURES-ORIENTED PROGRAMMES 



7 

PROGRAMMING LANGUAGES 

OBJECT-ORIENTED PROGRAMMING 

Object-oriented programming (OOP) is the last 

generation programming languages: it requires to 

code in terms of objects and their relationship to one 

another. 

The fundamental concept of OOP is that there are 

objects (derived classes or subclasses) grouped in 

classes (superclasses or parent classes). 

 

Every class contains more objects and they are 

somehow related: the process of creating these 

structures is called data modelling. 

 

Every class possesses some characteristics which are 

passed down to its objects, which inherit the 

characteristics of the class and add new ones to them. 

This concept is called inheritance. 

 

Two important features of OOP are polymorphism 

and encapsulation. Polymorphism can be defined as 

the “many forms of a single entity”, which means that 

a single task can be performed in more ways (OOP 

can select the correct function depending on the 

context. 

Encapsulation is the unity of data and 

methods to apply on data, which are shared 

both by classes and by objects. Data can 

only be accessed through the object which 

was designed to operate on that particular 

data (data are hidden from manipulation). 

This feature is also called information 

hiding. 



8 

PROGRAMMING LANGUAGES 



9 

PROGRAMMING LANGUAGES 
INHERITANCE 


